Skip to main content

Capstone Project: The Autonomous Humanoid

This capstone project brings together all concepts learned throughout the course to create an autonomous humanoid robot capable of receiving voice commands, planning paths, navigating obstacles, identifying objects using computer vision, and manipulating them. This project demonstrates the integration of ROS 2, Gazebo simulation, NVIDIA Isaac, and Vision-Language-Action (VLA) systems.

Project Overview

The Autonomous Humanoid integrates multiple AI and robotics technologies to create a system that can:

  • Receive and understand natural language voice commands
  • Plan navigation paths to reach specified locations
  • Navigate through environments with obstacles
  • Identify objects using computer vision
  • Manipulate objects based on the understood command

Learning Objectives

  • Integrate all four modules into a unified system
  • Implement end-to-end voice-to-action pipeline
  • Demonstrate multimodal perception and planning
  • Deploy cognitive planning systems on humanoid robot platforms

Architecture Overview

[Audio Input] → [Whisper] → [LLM] → [Task Planner] → [Navigation] → [Manipulation]
↑ ↓
[Human Command] ← [Human-Robot Interface] ← [ROS 2 Control]

System Components Integration

1. Voice Command Processing

import rospy
from std_msgs.msg import String
from audio_common_msgs.msg import AudioData
import whisper
import openai

class VoiceCommandProcessor:
def __init__(self):
# Initialize Whisper model
self.whisper_model = whisper.load_model("base")

# Initialize ROS node
rospy.init_node('voice_command_processor')

# Setup subscribers and publishers
self.audio_sub = rospy.Subscriber('/audio_input', AudioData, self.audio_callback)
self.command_pub = rospy.Publisher('/nlp_command', String, queue_size=10)

def audio_callback(self, audio_msg):
# Convert audio to text using Whisper
audio_array = self.convert_audio_to_array(audio_msg)
result = self.whisper_model.transcribe(audio_array)
transcription = result["text"]

# Send to LLM for semantic understanding
nlp_command = self.process_with_llm(transcription)

# Publish processed command
self.command_pub.publish(String(data=nlp_command))

def process_with_llm(self, transcription):
# Use LLM to extract semantic intent
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are a command interpreter for a humanoid robot. Convert natural language commands into structured robot commands. Output format: {'action': 'action_type', 'target': 'object_or_location', 'details': {...}}"},
{"role": "user", "content": f"Command: '{transcription}'"}
]
)
return response.choices[0].message.content

2. Path Planning for Bipedal Humanoid Movement

from nav_msgs.msg import OccupancyGrid, Path
from geometry_msgs.msg import PoseStamped
from nav2_msgs.action import NavigateToPose
import rclpy
from rclpy.action import ActionClient

class HumanoidPathPlanner:
def __init__(self):
# Initialize ROS 2 components
self.navigator = ActionClient(self, NavigateToPose, 'navigate_to_pose')

def plan_path(self, start_pose, goal_pose):
# Account for humanoid-specific constraints
humanoid_constraints = {
'max_step_height': 0.1, # Humanoid maximum step height
'max_step_length': 0.3, # Humanoid maximum step length
'foot_separation': 0.2, # Distance between feet
'turning_radius': 0.4 # Minimum turning radius
}

# Plan path considering bipedal constraints
path = self.nav2_path_planner.plan_path_with_constraints(
start_pose,
goal_pose,
humanoid_constraints
)

return path

3. Computer Vision for Object Identification

import cv2
import torch
from yolov5 import detect
from sensor_msgs.msg import Image
from cv_bridge import CvBridge

class HumanoidVisionSystem:
def __init__(self):
# Load YOLO model for object detection
self.yolo_model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
self.cv_bridge = CvBridge()

def detect_objects(self, image_msg):
# Convert ROS image to OpenCV format
cv_image = self.cv_bridge.imgmsg_to_cv2(image_msg, desired_encoding='bgr8')

# Run object detection
results = self.yolo_model(cv_image)

# Extract relevant objects
detections = []
for detection in results.xyxy[0]:
x1, y1, x2, y2, conf, cls = detection
if conf > 0.5: # Confidence threshold
object_info = {
'class': self.yolo_model.names[int(cls)],
'confidence': conf,
'bbox': [float(x1), float(y1), float(x2), float(y2)],
'center': [(x1+x2)/2, (y1+y2)/2]
}
detections.append(object_info)

return detections

4. Manipulation System

from control_msgs.msg import JointTrajectoryControllerState
from trajectory_msgs.msg import JointTrajectory, JointTrajectoryPoint
import numpy as np

class HumanoidManipulator:
def __init__(self):
# Initialize manipulator controllers
self.arm_controller = rospy.Publisher('/arm_controller/command', JointTrajectory, queue_size=1)
self.gripper_controller = rospy.Publisher('/gripper_controller/command', JointTrajectory, queue_size=1)

def grasp_object(self, object_pose, approach_angle=0.0):
# Plan approach trajectory
approach_traj = self.plan_approach_trajectory(object_pose, approach_angle)

# Execute approach
self.arm_controller.publish(approach_traj)

# Close gripper
grip_traj = self.create_gripper_close_trajectory()
self.gripper_controller.publish(grip_traj)

# Lift object
lift_traj = self.plan_lift_trajectory()
self.arm_controller.publish(lift_traj)

def place_object(self, target_pose):
# Move to target position
move_traj = self.plan_move_trajectory(target_pose)
self.arm_controller.publish(move_traj)

# Open gripper to release
release_traj = self.create_gripper_open_trajectory()
self.gripper_controller.publish(release_traj)

Integration Pipeline

1. Voice Command to Action Sequence

class AutonomousHumanoidSystem:
def __init__(self):
self.voice_processor = VoiceCommandProcessor()
self.path_planner = HumanoidPathPlanner()
self.vision_system = HumanoidVisionSystem()
self.manipulator = HumanoidManipulator()
self.ros_interface = ROS2Interface()

def execute_voice_command(self, command):
# Step 1: Parse the voice command
structured_command = self.voice_processor.process_with_llm(command)

# Step 2: Identify required actions
if structured_command.action == "fetch_and_place":
self.execute_fetch_and_place(structured_command)
elif structured_command.action == "navigate_and_identify":
self.execute_navigation(structured_command)
# Add more action types as needed

def execute_fetch_and_place(self, command):
# 1. Find the object to fetch
target_object = self.find_target_object(command.target)

# 2. Navigate to the object
self.navigate_to_object(target_object.location)

# 3. Identify and grasp the object
self.grasp_object(target_object)

# 4. Navigate to destination
self.navigate_to_destination(command.destination)

# 5. Place the object
self.place_object(command.destination)

def find_target_object(self, object_description):
# Use vision system to locate the described object
# Return object location and properties
pass

def navigate_to_object(self, object_location):
# Plan and execute navigation to object
current_pose = self.ros_interface.get_current_pose()
path = self.path_planner.plan_path(current_pose, object_location)
self.ros_interface.execute_path(path)

def navigate_to_destination(self, destination):
# Plan and execute navigation to destination
current_pose = self.ros_interface.get_current_pose()
path = self.path_planner.plan_path(current_pose, destination)
self.ros_interface.execute_path(path)

Simulation Environment

Setting up the Gazebo Environment

<!-- Example world file for humanoid simulation -->
<sdf version='1.7'>
<world name='humanoid_world'>
<!-- Add room environment -->
<include>
<uri>model://room_with_furniture</uri>
<pose>0 0 0 0 0 0</pose>
</include>

<!-- Humanoid robot -->
<include>
<uri>model://humanoid_robot</uri>
<pose>0 0 0.8 0 0 0</pose>
</include>

<!-- Objects to manipulate -->
<include>
<uri>model://object_to_clean</uri>
<pose>-1 1 0.8 0 0 0</pose>
</include>
</world>
</sdf>

Isaac Sim Integration

class IsaacSimIntegration:
def __init__(self):
# Initialize Isaac Sim
self.gym = gymapi.acquire_gym()
self.sim = self.gym.create_sim(0, 0, gymapi.SIM_PHYSX)

def setup_humanoid_env(self):
# Create humanoid robot in Isaac Sim
# Configure sensors (camera, IMU, etc.)
# Set up physics properties for bipedal locomotion
pass

def run_pegasus_locomotion(self, humanoid_actor):
# Implement humanoid locomotion
# Balance control for bipedal movement
# Footstep planning
pass

Implementation Workflow

Phase 1: Individual Component Testing

  1. Test voice recognition and LLM command interpretation
  2. Test path planning with humanoid constraints
  3. Test object detection and identification
  4. Test basic manipulation movements

Phase 2: Component Integration

  1. Integrate voice processing with command planning
  2. Connect navigation system with object detection
  3. Link manipulation system to visual feedback

Phase 3: End-to-End Testing

  1. Test complete voice command to execution sequence
  2. Handle failure cases and error recovery
  3. Optimize performance for real-time operation

Evaluation Criteria

Functional Requirements

  • Successfully receive and interpret voice commands
  • Navigate through environments with obstacles
  • Identify and manipulate requested objects
  • Complete tasks with minimal human intervention

Performance Metrics

  • Command Understanding Accuracy: Percentage of commands correctly interpreted
  • Navigation Success Rate: Percentage of successful navigations to targets
  • Object Manipulation Success: Percentage of successful grasps and placements
  • System Response Time: Average time from command to action initiation

Troubleshooting Common Issues

1. Voice Recognition Problems

  • Ensure proper microphone setup and audio quality
  • Adjust Whisper model parameters for environment
  • Implement voice activity detection

2. Navigation Failures

  • Verify map accuracy and obstacle detection
  • Adjust humanoid-specific navigation parameters
  • Implement fallback navigation strategies

3. Object Manipulation Issues

  • Calibrate vision system to robotic arm
  • Implement grasp pose estimation
  • Add tactile feedback for grasp confirmation

Deployment Considerations

Simulation to Real Robot Transfer

  • Validate simulation accuracy against real-world behavior
  • Account for sim-to-real domain differences
  • Implement adaptive control for real-world variations

Safety Measures

  • Implement emergency stop mechanisms
  • Ensure robot operates within safe joint limits
  • Add collision avoidance during manipulation

Conclusion

The Autonomous Humanoid capstone project demonstrates the integration of all course modules:

  • Module 1: ROS 2 for robot control and communication
  • Module 2: Gazebo simulation and Unity visualization for testing
  • Module 3: NVIDIA Isaac for advanced perception and navigation
  • Module 4: VLA systems for cognitive planning and voice interaction

This project showcases how embodied intelligence bridges the gap between digital AI and physical robotic systems, creating robots that can understand and act on natural human commands in real-world environments.